Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445988

RESUMO

Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/metabolismo , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética
2.
Sci Rep ; 12(1): 17571, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266428

RESUMO

The E3 ubiquitin-ligases are important for cellular protein homeostasis and their deregulation is implicated in cancer. The E3 ubiquitin-ligase Hakai is involved in tumour progression and metastasis, through the regulation of the tumour suppressor E-cadherin. Hakai is overexpressed in colon cancer, however, the implication in colitis-associated cancer is unknown. Here, we investigated the potential role of Hakai in intestinal inflammation and cancer bowel disease. Several mouse models of colitis and associated cancer were used to analyse Hakai expression by immunohistochemistry. We also analysed Hakai expression in patients with inflamed colon biopsies from ulcerative colitis and Crohn's disease. By Hakai interactome analysis, it was identified Fatty Acid Synthase (FASN) as a novel Hakai-interacting protein. Moreover, we show that Hakai induces FASN ubiquitination and degradation via lysosome, thus regulating FASN-mediated lipid accumulation. An inverse expression of FASN and Hakai was detected in inflammatory AOM/DSS mouse model. In conclusion, Hakai regulates FASN ubiquitination and degradation, resulting in the regulation of FASN-mediated lipid accumulation, which is associated to the development of inflammatory bowel disease. The interaction between Hakai and FASN may be an important mechanism for the homeostasis of intestinal barrier function and in the pathogenesis of this disease.


Assuntos
Colite , Neoplasias do Colo , Ubiquitina-Proteína Ligases , Animais , Camundongos , Caderinas/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ácido Graxo Sintases , Inflamação , Lipídeos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas , Colite/complicações , Colite/metabolismo
3.
Biomolecules ; 11(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572607

RESUMO

In the traditional fermentative model yeast Saccharomyces cerevisiae, ScIxr1 is an HMGB (High Mobility Group box B) protein that has been considered as an important regulator of gene transcription in response to external changes like oxygen, carbon source, or nutrient availability. Kluyveromyces lactis is also a useful eukaryotic model, more similar to many human cells due to its respiratory metabolism. We cloned and functionally characterized by different methodologies KlIXR1, which encodes a protein with only 34.4% amino acid sequence similarity to ScIxr1. Our data indicate that both proteins share common functions, including their involvement in the response to hypoxia or oxidative stress induced by hydrogen peroxide or metal treatments, as well as in the control of key regulators for maintenance of the dNTP (deoxyribonucleotide triphosphate) pool and ribosome synthesis. KlIxr1 is able to bind specific regulatory DNA sequences in the promoter of its target genes, which are well conserved between S. cerevisiae and K. lactis. Oppositely, we found important differences between ScIrx1 and KlIxr1 affecting cellular responses to cisplatin or cycloheximide in these yeasts, which could be dependent on specific and non-conserved domains present in these two proteins.


Assuntos
Desoxirribonucleotídeos/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas HMGB/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/genética , Sequência de Bases , Cádmio/toxicidade , Carbono/farmacologia , Ciclo Celular/efeitos dos fármacos , Cisplatino/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Proteínas Fúngicas/química , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas HMGB/química , Heme/biossíntese , Peróxido de Hidrogênio/toxicidade , Kluyveromyces/efeitos dos fármacos , Mutação/genética , Oxirredução/efeitos dos fármacos , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Ribossômico/genética , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Cancers (Basel) ; 13(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572914

RESUMO

This study reports the HMGB1 interactomes in prostate and ovary cancer cells lines. Affinity purification coupled to mass spectrometry confirmed that the HMGB1 nuclear interactome is involved in HMGB1 known functions such as maintenance of chromatin stability and regulation of transcription, and also in not as yet reported processes such as mRNA and rRNA processing. We have identified an interaction between HMGB1 and the NuRD complex and validated this by yeast-two-hybrid, confirming that the RBBP7 subunit directly interacts with HMGB1. In addition, we describe for the first time an interaction between two HMGB1 interacting complexes, the septin and THOC complexes, as well as an interaction of these two complexes with Rab11. Analysis of Pan-Cancer Atlas public data indicated that several genes encoding HMGB1-interacting proteins identified in this study are dysregulated in tumours from patients diagnosed with ovary and prostate carcinomas. In PC-3 cells, silencing of HMGB1 leads to downregulation of the expression of key regulators of ribosome biogenesis and RNA processing, namely BOP1, RSS1, UBF1, KRR1 and LYAR. Upregulation of these genes in prostate adenocarcinomas is correlated with worse prognosis, reinforcing their functional significance in cancer progression.

5.
Curr Med Chem ; 27(20): 3271-3289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30674244

RESUMO

We have summarized common and differential functions of HMGB1 and HMGB2 proteins with reference to pathological processes, with a special focus on cancer. Currently, several "omic" approaches help us compare the relative expression of these 2 proteins in healthy and cancerous human specimens, as well as in a wide range of cancer-derived cell lines, or in fetal versus adult cells. Molecules that interfere with HMGB1 functions, though through different mechanisms, have been extensively tested as therapeutic agents in animal models in recent years, and their effects are summarized. The review concludes with a discussion on the perspectives of HMGB molecules as targets in prostate and ovarian cancers.


Assuntos
Proteína HMGB1/genética , Proteína HMGB2/genética , Neoplasias Ovarianas/genética , Neoplasias da Próstata , Animais , Feminino , Humanos , Masculino , Ovário , Neoplasias da Próstata/genética
6.
Sci Rep ; 8(1): 3090, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449612

RESUMO

Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work. Ixr1 regulates other transcriptional factors that respond to nutrient availability or extracellular and intracellular stress stimuli, some controlled by the TOR pathway and PKA signaling. Ixr1 controls transcription of ribosomal RNAs and genes encoding ribosomal proteins or involved in ribosome assembly. qPCR, ChIP, and 18S and 25S rRNAs measurement have confirmed this function. Ixr1 binds directly to several promoters of genes related to rRNA transcription and ribosome biogenesis. Cisplatin treatment mimics the effect of IXR1 deletion on rRNA and ribosomal gene transcription, and prevents Ixr1 binding to specific promoters related to these processes.


Assuntos
Cisplatino/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Reparo do DNA , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
7.
Sci Rep ; 7: 45535, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361909

RESUMO

Kluyveromyces lactis ß-galactosidase (Kl-ß-Gal) is one of the most important enzymes in the dairy industry. The poor stability of this enzyme limits its use in the synthesis of galactooligosaccharides (GOS) and other applications requiring high operational temperature. To obtain thermoresistant variants, a rational mutagenesis strategy by introducing disulphide bonds in the interface between the enzyme subunits was used. Two improved mutants, R116C/T270C and R116C/T270C/G818C, had increased half-lives at 45 °C compared to Kl-ß-Gal (2.2 and 6.8 fold increases, respectively). Likewise, Tm values of R116C/T270C and R116C/T270C/G818C were 2.4 and 8.5 °C, respectively, higher than Kl-ß-Gal Tm. Enrichment in enzymatically active oligomeric forms in these mutant variants also increased their catalytic efficiency, due to the reinforcement of the interface contacts. In this way, using an artificial substrate (p-nitrophenyl-ß-D-galactopyranoside), the Vmax values of the mutants were ~1.4 (R116C/T270C) and 2 (R116C/T270C/G818C) fold higher than that of native Kl-ß-Gal. Using the natural substrate (lactose) the Vmax for R116C/T270C/G818C almost doubled the Vmax for Kl-ß-Gal. Validation of these mutant variants of the enzyme for their use in applications that depend on prolonged incubations at high temperatures was achieved at the laboratory scale by monitoring their catalytic activity in GOS synthesis.


Assuntos
Dissulfetos/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Mutagênese/genética , beta-Galactosidase/genética , Galactose/genética , Temperatura Alta , Kluyveromyces/enzimologia , Lactose/genética , Mutação/genética , Temperatura
8.
FEBS J ; 284(12): 1815-1829, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28391618

RESUMO

ß-Galactosidases are biotechnologically interesting enzymes that catalyze the hydrolysis or transgalactosylation of ß-galactosides. Among them, the Aspergillus niger ß-galactosidase (AnßGal) belongs to the glycoside hydrolase family 35 (GH35) and is widely used in the industry due to its high hydrolytic activity which is used to degrade lactose. We present here its three-dimensional structure in complex with different oligosaccharides, to illustrate the structural determinants of the broad specificity of the enzyme against different glycoside linkages. Remarkably, the residues Phe264, Tyr304, and Trp806 make a dynamic hydrophobic platform that accommodates the sugar at subsite +1 suggesting a main role on the recognition of structurally different substrates. Moreover, complexes with the trisaccharides show two potential subsites +2 depending on the substrate type. This feature and the peculiar shape of its wide cavity suggest that AnßGal might accommodate branched substrates from the complex net of polysaccharides composing the plant material in its natural environment. Relevant residues were selected and mutagenesis analyses were performed to evaluate their role in the catalytic performance and the hydrolase/transferase ratio of AnßGal. Thus, we generated mutants with improved transgalactosylation activity. In particular, the variant Y304F/Y355H/N357G/W806F displays a higher level of galacto-oligosaccharides production than the Aspergillus oryzae ß-galactosidase, which is the preferred enzyme in the industry owing to its high transferase activity. Our results provide new knowledge on the determinants modulating specificity and the catalytic performance of fungal GH35 ß-galactosidases. In turn, this fundamental background gives novel tools for the future improvement of these enzymes, which represent an interesting target for rational design. DATABASE: Structural data are available in PDB database under the accession numbers 5IFP (native form), 5IHR (in complex with 6GalGlu), 5IFT (in complex with 3GalGlu), 5JUV (in complex with 6GalGal), 5MGC (in complex with 4GalLac), and 5MGD (in complex with 6GalLac).


Assuntos
Aspergillus niger/enzimologia , Glicosídeos/metabolismo , Mutação , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Aspergillus niger/genética , Aspergillus niger/crescimento & desenvolvimento , Cristalografia por Raios X , Glicosídeos/química , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Especificidade por Substrato , beta-Galactosidase/genética
9.
Biochem Cell Biol ; 94(5): 480-490, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27617756

RESUMO

Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.


Assuntos
Centro Germinativo/metabolismo , Mytilus/metabolismo , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Histonas/metabolismo , Mutação/genética , Mytilus/genética , Filogenia , Conformação Proteica , Proteínas/química , Homologia de Sequência do Ácido Nucleico
10.
Oxid Med Cell Longev ; 2016: 5845061, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26682011

RESUMO

Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB) proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.


Assuntos
Proteínas HMGB/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Feminino , Humanos , Masculino , Neoplasias Ovarianas/patologia , Oxirredução , Neoplasias da Próstata/patologia
11.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 11): 1529-31, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25372823

RESUMO

ß-Galactosidase from Aspergillus niger (An-ß-Gal), belonging to the family 35 glycoside hydrolases, hydrolyzes the ß-galactosidase linkages in lactose and other galactosides. It is extensively used in industry owing to its high hydrolytic activity and safety. The enzyme has been expressed in yeasts and purified by immobilized metal-ion affinity chromatography for crystallization experiments. The recombinant An-ß-Gal, deglycosylated to avoid heterogeneity of the sample, has a molecular mass of 109 kDa. Rod-shaped crystals grew using PEG 3350 as the main precipitant agent. A diffraction data set was collected to 1.8 Šresolution.


Assuntos
Aspergillus niger/enzimologia , Proteínas de Bactérias/química , beta-Galactosidase/química , Sequência de Aminoácidos , Aspergillus niger/genética , Proteínas de Bactérias/genética , Cristalização , Bases de Dados Genéticas , Dados de Sequência Molecular , Difração de Raios X , beta-Galactosidase/genética
13.
Int J Mol Sci ; 15(7): 12573-90, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25029545

RESUMO

Sky1 is the only member of the SR (Serine-Arginine) protein kinase family in Saccharomyces cerevisiae. When yeast cells are treated with the anti-cancer drug cisplatin, Sky1 kinase activity is necessary to produce the cytotoxic effect. In this study, proteome changes in response to this drug and/or SKY1 deletion have been evaluated in order to understand the role of Sky1 in the response of yeast cells to cisplatin. Results reveal differential expression of proteins previously related to the oxidative stress response, DNA damage, apoptosis and mitophagy. With these precedents, the role of Sky1 in apoptosis, necrosis and mitophagy has been evaluated by flow-cytometry, fluorescence microscopy, biosensors and fluorescence techniques. After cisplatin treatment, an apoptotic-like process diminishes in the ∆sky1 strain in comparison to the wild-type. The treatment does not affect mitophagy in the wild-type strain, while an increase is observed in the ∆sky1 strain. The increased resistance to cisplatin observed in the ∆sky1 strain may be attributable to a decrease of apoptosis and an increase of mitophagy.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Cisplatino/farmacologia , Mitofagia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/genética , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Microbiology (Reading) ; 160(Pt 7): 1357-1368, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24763424

RESUMO

Cisplatin is commonly used in cancer therapy and yeast cells are also sensitive to this compound. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin treatment, which are dependent on or independent of SKY1 function--a gene whose deletion increases resistance to the drug. Gene expression changes produced by addition of cisplatin to W303 and W303-Δsky1 cells were recorded using DNA microarrays. The data, validated by quantitative PCR, revealed 122 differentially expressed genes: 69 upregulated and 53 downregulated. Among the upregulated genes, those related to sulfur metabolism were over-represented and partially dependent on Sky1. Deletions of MET4 or other genes encoding co-regulators of the expression of sulfur-metabolism-related genes, with the exception of MET28, did not modify the cisplatin sensitivity of yeast cells. One of the genes with the highest cisplatin-induced upregulation was SEO1, encoding a putative permease of sulfur compounds. We also measured the platinum, sulfur and glutathione content in W303, W303-Δsky1 and W303-Δseo1 cells after cisplatin treatment, and integration of the data suggested that these transcriptional changes might represent a cellular response that allowed chelation of cisplatin with sulfur-containing amino acids and also helped DNA repair by stimulating purine biosynthesis. The transcription pattern of stimulation of sulfur-containing amino acids and purine synthesis decreased, or even disappeared, in the W303-Δsky1 strain.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Enxofre/metabolismo , Regulação para Baixo , Expressão Gênica , Perfilação da Expressão Gênica , Glutationa/análise , Glutationa/metabolismo , Concentração Inibidora 50 , Redes e Vias Metabólicas , Platina/análise , Platina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Enxofre/análise , Transcriptoma , Regulação para Cima
15.
Biotechnol Lett ; 34(12): 2161-73, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23007444

RESUMO

Recent advances in the knowledge of molecular mechanisms that control the adaptation to low oxygen levels in yeast and their biotechnological applications, including bioproduct synthesis, such as ethanol, glutathione or recombinant proteins, as well as pathogenic virulence, are reviewed. Possible pathways and target genes, which might be of particular interest for the improvement of biotechnological applications, are evaluated.


Assuntos
Biotecnologia/métodos , Oxigênio/metabolismo , Estresse Fisiológico , Leveduras/fisiologia , Anaerobiose , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Glutationa/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Virulência/metabolismo , Leveduras/metabolismo
16.
Oxid Med Cell Longev ; 2012: 634674, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928082

RESUMO

Studies about hypoxia-induced oxidative stress in human health disorders take advantage from the use of unicellular eukaryote models. A widely extended model is the fermentative yeast Saccharomyces cerevisiae. In this paper, we describe an overview of the molecular mechanisms induced by a decrease in oxygen availability and their interrelationship with the oxidative stress response in yeast. We focus on the differential characteristics between S. cerevisiae and the respiratory yeast Kluyveromyces lactis, a complementary emerging model, in reference to multicellular eukaryotes.


Assuntos
Células/imunologia , Kluyveromyces/citologia , Kluyveromyces/imunologia , Modelos Biológicos , Estresse Oxidativo/imunologia , Anaerobiose/imunologia , Animais , Humanos , Viabilidade Microbiana
17.
Gene ; 497(1): 27-37, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22310389

RESUMO

We have characterized the KlROX1 gene from Kluyveromyces lactis and verified that it does not regulate the hypoxic response in this yeast, oppositely to the Saccharomyces cerevisiae homologue ScROX1. The KlROX1 promoter is not regulated by KlHap1p or KlRox1p in response to changes aerobiosis/hypoxia. Besides, KlRox1p expression only partially represses ScANB1 in S. cerevisiae and does not regulate the ScANB1 and KlHEM13 promoters in K. lactis. KlRox1p does not interact either with KlTup1p or KlSsn6p or with their homologues ScTup1p and ScSsn6p, which are components of the general co-repressor factor that mediates the transcriptional repression exerted by ScRox1p in S. cerevisiae. We have found that KlROX1 mediates the response to arsenate and cadmium and, in the presence of cadmium, it is necessary for KlYCF1 expression, a gene encoding a protein with homology to the yeast cadmium and arsenite vacuolar transporter. EMSA assays show that KlRox1p binds, through its HMG domain, to a DNA sequence present in the KlYCF1 promoter. Although in S. cerevisiae the function of ScRox1p in cadmium resistance was already known and linked to regulation of ScFET4 expression, we have found that ScRox1p also regulates ScYCF1transcription and binds to its promoter.


Assuntos
Cádmio/farmacologia , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/fisiologia , Kluyveromyces/genética , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/metabolismo , Sequências Reguladoras de Ácido Nucleico
18.
Can J Microbiol ; 58(2): 184-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260231

RESUMO

The yeast Saccharomyces cerevisiae has been previously used as a model eukaryotic system to identify genes related to drug resistance. Deletion of the IXR1 gene increases resistance to cisplatin, and deletion of the SKY1 gene increases resistance to cisplatin and spermine. Three S. cerevisiae strains and their derivatives, carrying single Δixr1 and Δsky1 and double Δixr1Δsky1 deletions, were compared in terms of resistance against these compounds. We found that the effects of these deletions are highly dependent on the genetic background of the selected strains. These results are valuable in the selection of yeast strains to be used in genetic screenings of compounds with putative pharmacological interest.


Assuntos
Farmacorresistência Fúngica/genética , Saccharomyces cerevisiae/fisiologia , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espermina/farmacologia
19.
J Struct Biol ; 177(2): 392-401, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22193516

RESUMO

ß-Galactosidase or lactase is a very important enzyme in the food industry, being that from the yeast Kluyveromyces lactis the most widely used. Here we report its three-dimensional structure both in the free state and complexed with the product galactose. The monomer folds into five domains in a pattern conserved with the prokaryote enzymes of the GH2 family, although two long insertions in domains 2 and 3 are unique and related to oligomerization and specificity. The tetrameric enzyme is a dimer of dimers, with higher dissociation energy for the dimers than for its assembly. Two active centers are located at the interface within each dimer in a narrow channel. The insertion at domain 3 protrudes into this channel and makes putative links with the aglycone moiety of docked lactose. In spite of common structural features related to function, the determinants of the reaction mechanism proposed for Escherichia coli ß-galactosidase are not found in the active site of the K. lactis enzyme. This is the first X-ray crystal structure for a ß-galactosidase used in food processing.


Assuntos
Proteínas Fúngicas/química , Galactose/química , Kluyveromyces/enzimologia , beta-Galactosidase/química , Domínio Catalítico , Complexos de Coordenação/química , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Especificidade por Substrato , Propriedades de Superfície
20.
Appl Microbiol Biotechnol ; 94(1): 173-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22189861

RESUMO

In Saccharomyces cerevisiae, adaptation to hypoxia/anaerobiosis requires the transcriptional induction or derepression of multiple genes organized in regulons controlled by specific transcriptional regulators. Ixr1p is a transcriptional regulatory factor that causes aerobic repression of several hypoxic genes (COX5B, TIR1, and HEM13) and also the activation of HEM13 during hypoxic growth. Analysis of the transcriptome of the wild-type strain BY4741 and its isogenic derivative Δixr1, grown in aerobic and hypoxic conditions, reveals differential regulation of genes related not only to the hypoxic and oxidative stress responses but also to the re-adaptation of catabolic and anabolic fluxes in response to oxygen limitation. The function of Ixr1p in the transcriptional regulation of genes from the sulfate assimilation pathway and other pathways producing α-keto acids is of biotechnological importance for industries based on yeast-derived fermentation products.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Estresse Oxidativo , Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA